

Network Management

Jaakko Kotimäki

Department of Computer Science and Engineering Aalto University, School of Science and Technology

25. maaliskuuta 2014

Outline

Introduction

SNMP architecture

Management Information Base

SNMP protocol

Network management in practice

Niksula

Network Management

"When you have 100s of computers in a network or you are running a backbone, you are almost always interested about the state of the network nodes and want to know about the traffic flows."

- Timo Kiravuo

Using the network to manage the network

- Network management requires a protocol which should:
 - Not generate too much load on the network and nodes
 - Be affected as little as possible by congestion, packet loss, outages etc.
 - Report meaningful information about the network and its nodes
 - Not block the management or managed nodes

Network management tasks

- ITU-T Telecommunications Management Network recommends FCAPS network management model
- A useful check list:
 - Fault Management
 - Configuration Management
 - Accounting
 - Performance Management
 - Security Management
- OSI CMIP (Common Management Information Protocol) implements this as a single protocol

Outline

Introduction

SNMP architecture

Management Information Base

SNMP protocol

Network management in practice

Niksula

Network Management with SNMP

- Simple Network Management Protocol (SNMP)
- IETF's network management protocol and architecture
- Four defined components:
 - Network elements have a small server program called agent
 - Management station queries network elements for information
 - Simple Network Management Protocol for exchanging information between agents and management station
 - Management Information Base (MIB) defines the information given by SNMP agents

SNMP architecture

SNMP Agent

- The agent is a server on the managed device that collects information of the system
- Sources of information:
 - Operating system tables
 - Network interfaces
 - Software (servers)
- The agent replies to SNMP queries from the management station
- Commercial and freeware implementations
- Typically an agent comes with the operating system

Management station

- Typically commercial or free software running on a workstation
- ► The network management station software queries various agents in network elements for information
- The management station software reads the MIB descriptions
- The management software has addresses of the managed network elements
- The management software knows what particular information to fetch from the element

Outline

Introduction

SNMP architecture

Management Information Base

SNMP protocol

Network management in practice

Niksula

MIB descriptions

- The administrators read the MIB descriptions to understand the data
- The management software keeps the MIB descriptions in files for reference
- MIB description specifies the data on the managed equipment as variables
- Variables can be queried and set by the manager
- Variables are named using Object IDentifiers (OIDs), a hierarchical scheme, e.g. iso.org.dod.internet.mgmt.mib-2
- MIB descriptions are written using ASN.1 (Abstract Syntax Notation One)

The OID of the element is 1.3.6.1.2.1.1.3 – or iso.org.dod.internet.mgmt.mib-2.system.sysUpTime

```
sysUpTime OBJECT-TYPE
SYNTAX      TimeTicks
MAX-ACCESS    read-only
STATUS      current
DESCRIPTION
    "The time (in hundredths of a second)
      since the network management portion
      of the system was last re-initialized."
::= { system 3 }
```

MIB datatypes

- Most common types
 - Integer, usually signed 32 bit
 - Octet String, a sequence of bytes
 - Gauge, can go up and down within a range
 - Counter, grows until it rolls to zero at max value (2³²)
 - TimeTicks, time measure in hundredths of seconds
- Data can also be stored in tables
- More complex data types can be constructed using sequence and union

Using MIB datatypes

- Integers and octet strings are useful for relatively static data
- Gauge can be for example the CPU load as percents
- Counter is especially useful for collecting traffic statistics
 - It grows only up and at the max value it rolls around
 - The counter should be read several times before it rolls around to obtain a correct reading
 - The management station is in charge of interpreting the counter and collecting statistics
 - The agent just keeps the current state of variables

MIB naming tree

Every SNMP variable has a place in the global MIB tree

Example: MIB-II

- The Internet MIB-II database (RFC-1213) defines commonly used MIB variables for Internet network elements
- Standard protocol MIBs start with 1.3.6.1.2.1 (iso.org.dod.internet.mgmt.mib-2)
 - The same management software can be used for monitoring network devices by different vendors
 - E.g. the IP address for the host is held in the mib-2.ip.ipAddrTable table (one host may have many addresses)
- Enterprise MIBs start with 1.3.6.1.4.1 (iso.org.dod.internet.private.enterprises)
 - Manufacturers (or anyone) can define their own MIB descriptions

Writing your own MIB

- Get your enterprise MIB address from IANA
- Understand the properties of the phenomenon to be monitored or controlled
 - webcam, vending machine, toaster...
- Describe the data to be transferred in terms of single variables and tables
- Write the MIB definition in ASN.1 language
- Select a module from an existing SNMP agent and rewrite it to implement the MIB
- Feed your MIB file to a management software and test it

Outline

Introduction

SNMP architecture

Management Information Base

SNMP protocol

Network management in practice

Niksula

SNMP protocol

- Works on top of UDP
- Agent listens port 161
- Management station listens port 162 for trap messages
- Simple get/set protocol: device is managed by setting variables
- Messages are coded with ASN.1
- Three major versions

SNMPv1

- Defined in RFC-1157 (1990)
- Five message types:
 - get-request fetching the value of some variables
 - get-next-request fetch the value of next OID (useful)
 - set-request set the value of some variables
 - get-response return message from queries above
 - trap notify the manager

SNMPv1 messages

SNMP message format

VERSION (integer)

COMMUNITY (string)

PDU TYPE (0-3)

REQUEST-ID (integer)

ERROR-STATUS(0 if request)

ERROR-INDEX (0 if request)

VARIABLE BINDINGS (<objectName, objectSyntax>-pairs)

SNMP message format

- Version is the version number of the protocol
- Community is the common name for managed area and it can be used as a clear-text password between the manager and agent
- PDU Type tells the message type
- Request ID is an identifier for separating the requests
- Error Status and Error Index are used in get-response to indicate problems e.g. noSuchName or readOnly.
- Variable Bindings is a list of object name-value pairs

SNMPv1 Traps

- A SNMP agent can send a trap to the SNMP manager when something happened in the agent that the manager wants to know about
- ► There is no reply, which means that traps are not reliable
- Traps should be considered an informational addition to the normal get -sequences of collecting the management information

SNMPv1 Traps

VERSION (integer)					
COMMUNITY (string)					
PDU TYPE (4=trap)					
ENTERPRISE					
AGENT ADDRESS					
TRAP TYPE (0-6)					
SPECIFIC CODE					
TIMESTAMP					
VARIABLE BINDINGS					

SNMPv1 Traps

- PDU Type = 4 = trap
- Enterprise is the OID of the enterprise
- Agent Address is the address of the device
- Trap Type, six pre-defined traps, plus one vendor specific
 - ColdStart
 - WarmStart
 - linkDown
 - linkUp
 - authenticationFailure
 - egpNeighborLoss
 - enterpriseSpecific
- Specific Code some enterprise specific trap code
- Timestamp is the time since last initialization of the network

SNMPv2

- Extends the original SNMP version
- Multiple subversions: v2, v2c and v2u, several RFCs each
- New features:
 - GetBulkRequest transfer potentially large amount of data, efficient for especially large tables
 - InformRequest implements acknowledged trap
 - Trap format changes
- Security enhancements in v2u, not widely used

SNMPv3

- RFC 3410-3418 (2002), an Internet standard STD0062 (2004)
- A new framework (architecture) for processing the messages
- Provides important security features:
 - Confidentiality, message integrity, authentication
- Not widely deployed yet

SNMP and security

- V1 has no security in the protocol
- V2 has some security features, not widely used
- V3 has cryptographic integrity and confidentiality protection for the protocol
 - User-based Security Model (USM) RFC-3414
- New:
 - RFC-5592 Secure Shell Transport Model for SNMP, 2009
 - RFC-5953 TLS Transport model for SNMP, 2010

SNMP and security in practice

- SNMP should not be used in untrusted networks
 - And blocked in the firewall
 - Better yet, in its own virtual LAN (VLAN) in a private network
- IPSec may be used directly to protect the SNMP traffic that uses UDP

Network Configuration Protocol (NETCONF)

The next generation of network management?

- IETF Internet standard RFC-6241
- On top of a secure transport layer e.g. SSH or TLS
- RPC-based client-server model with XML encoding
- Strong industry support (Cisco, Juniper, etc.)

NETCONF key features

- Separation of Configuration and State Data
- Configuration change transactions
- Configuration datastores
- Configuration testing and validation support

Outline

Introduction

SNMP architecture

Management Information Base

SNMP protocol

Network management in practice

Niksula

Network subnet planning

- Start from the biggest subnet, the network that needs most addresses
- Continue to smaller subnets
- Make sure to count in the network address and broadcast address. Router needs an address as well!
 - ► E.g. the network 130.233.192.0/24 has 8 bits for hosts (32 24 = 8). This means 2⁸ = 256 addresses, but two of them are reserved one for the network and one for broadcast, so there are 254 addresses for devices.

Network subnet planning

Network subnet planning

Network	# of devices	# of host addresses	CIDR	Network address (last two octets in binary)
The network given to be divided			/22	130.233.192.0/22 1000 0010 1110 1001 1100 0000 0000 00
Subnet 1	256 hosts 1 router	2^8-2=254, 2^9-2=510	/23	130.233.192.0/23 1100 0000 0000 0000
Subnet 2	50 hosts 1 router	2^6-2=62	/26	130.233.194.0/26 1100 001 0 0000 0000
Subnet 3	10 hosts 1 router	2^4-2=14	/28	130.233.194.64/28 1100 0010 0100 0000
Subnet 4	10 hosts 1 router		/28	130.233.194.80/28 1100 0010 0101 0000
Subnet A	2 routers	2^2-2=2	/30	130.233.194.96/30 1100 0010 0110 0000
Subnet B	2 routers		/30	130.233.194.100/30 1100 0010 0110 0100
Subnet C	2 routers		/30	130.233.194.104/30 1100 0010 0110 1000

SNMP freeware tools

- Several freeware packages are available that have both an agent and the command line tools for management
- The (command line) tools usually correspond to the SNMP protocol actions e.g. snmpget
 - Additionally often included the useful snmpwalk tool which traverses an OID branch of the MIB tree using the get-next-response
- DEMOS!

Network Management in action using SNMP

- When the management software finds something wrong, e.g. one of the power supplies of the switch fails, the management software sends an email alert
- Network manager may set variables in a network element, e.g. changing the network (VLAN) of a switch port to another
- A network element may send a trap, for example a printer may signal that it is out of paper

Practical network management

- Network management is about monitoring and tuning performance
 - How to locate performance bottlenecks
 - Planning for future needs
- Sometimes it is about disaster recovery
 - Devices break or an ignorant user causes problems for example by accidentally creating a loop to the network
 - Denial of Service attacks
 - Hunting down infected or misbehaving devices e.g. laptops or network flooding computers

Deploying SNMP to a network

- Activate agents at the nodes to be monitored
- Configure the management station
 - Decide which OIDs to monitor
 - For a router a table of interfaces
 - How often to poll
- Enjoy the show
 - Learn to interpret the data and behavior of the devices
 - Produce nice graphs and summaries for the management

Outline

Introduction

SNMP architecture

Management Information Base

SNMP protocol

Network management in practice

Niksula

CS-building network and Niksula

- One router and about 50 switches
- Hundreds of hosts
- Multiple subnets from HUT/AALTO domain
- Devices managed via SNMP include printers, servers and network
- Other management tools: puppet, git
- DEMO

Questions?